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A Default Temporal Logic for Regulatory Conformance
Checking⋆

Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

Department of Computer Science
University of Pennsylvania

Philadelphia, PA 19104-6389, USA
{nikhild,joshi,lee,sokolsky}@seas.upenn.edu

Abstract. This paper considers the problem of checking whether an organiza-
tion conforms to a body of regulation. Conformance is cast as a trace checking
question – the regulation is represented in a logic that is evaluated against an ab-
stract trace or run representing the operations of an organization. We focus on a
problem in designing a logic to represent regulation.
A common phenomenon in regulatory texts is for sentences to refer to others for
conditions or exceptions. We motivate the need for a formal representation of
regulation to accomodate such references between statements. We then extend
linear temporal logic to allow statements to refer to others. The semantics of the
resulting logic is defined via a combination of techniques from Reiter’s default
logic and Kripke’s theory of truth.
This paper is an expanded version of [1].

1 Introduction

Regulations, laws, and policies that affect many aspects of our lives are represented
predominantly as documents in natural language. For example, the Food and Drug Ad-
ministration’s Code of Federal Regulations [2] (FDA CFR) governs the operations of
American bloodbanks. The CFR is framed by experts in the field of medicine, and reg-
ulates the tests that need to be performed on donations of blood before they are used. In
such safety-critical scenarios, it is desirable to assess formally whether an organization
(bloodbank) conforms to the regulation (CFR).

There is a growing interest in using formal methods to assist organizations in com-
plying with regulation [3–5]. Assisting an organization in compliance involves a num-
ber of tasks related to the notion of a violation. For example, it is of interest to detect or
prevent violations, assign blame, and if possible, recover from violations. In this paper,
we focus onconformance checkingwhich involves detecting the presence of violations.

We cast conformance checking as a trace-checking question. The regulation is trans-
lated to statements in a logic which are evaluated against a trace or run representing the
operations of an organization. The result of evaluation is either an affirmative answer to
conformance, or a counterexample representing a subset of the operations of the orga-
nization and the specific law that is violated.

⋆ This research was supported in part by NSF CCF-0429948, NSF-CNS-0610297, ARO
W911NF-05-1-0158, and ONR MURI N00014-07-1-0907.
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There are two important features of regulatory texts that need to be accomodated
by a representation in logic. First, regulations convey constraints on an organization’s
operations, and these constraints can be obligatory (required) or permitted (optional).
Second, statements in regulation refer to others for conditions or exceptions. An orga-
nization conforms to a body of regulation iff it satisfies all the obligations. However,
permissions provide exceptions to obligations, indirectly affecting conformance. Our
formulation of obligations and permissions follows the theory of Ross [6], and we will
discuss the relationship to other theories (cf. [7]) in Section 3.1.

The central focus of this work is the function of regulatory sentences as conditions
or exceptions to others. This function of sentences makes them dependent on others for
their interpretation, and makes the translation to logic difficult. We call this the problem
of references to other laws. In Section 2, we argue that a logic to represent regulation
should provide mechanisms for statements to refer to others. We provide motivation
using examples from the FDA CFR. We discuss how these sentences can be represented
in a logic without references, and conclude that this would make the translation difficult.

We then turn to the task of defining a logic that lets statements refer to and rea-
son about others. In Section 3.1, we define a trace or run-based representation for the
operations of an organization, and a predicate-based linear temporal logic (PredLTL)
to make assertions about runs. PredLTL is extended to express two kinds of normative
statements (obligations and permissions), leading to a formal definition of conformance.

In Sections 3.2 and 3.3, we extend PredLTL to allow references between laws
thereby making permissions relevant to conformance. Specifically, we introducean
inference predicate, whose interpretation is determined by inferences from laws. The
justifications in default logic [8] can be cast as an instance of this predicate. Default
logic has been used in computing extensions to a theory, in the manner of logic pro-
grams [9, 10]. In conformance checking, we need to separate two uses of statements:
(a) extending a theory (the regulation), and (b) determining facts about an organization.
This separation is achieved using the inference predicate. Statements are evaluated us-
ing the fixed points of an appropriate function, based on a technique used in Kripke’s
theory of truth [11].

An axiomatization is discussed in Section 4. And, Section 5 concludes with a dis-
cussion of related and future work.

2 Motivation

In this section, we argue that a logic to represent regulation should provide a mechanism
for sentences to refer to others. We discuss shortened versions of sentences from the
CFR Section 610.40, which we will use as a running example throughout the paper.
Consider the following sentences:

(1) Except as specified in (2), every donation of blood or blood component must be
tested for evidence of infection due to Hepatitis B.

(2) You are not required to test donations of source plasma for evidence of infection
due to Hepatitis B.
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Statement (1) conveys an obligation to test donations of blood or blood component
for Hepatitis B, and (2) conveys a permission not to test a donation of source plasma
(a blood component) for Hepatitis B. To assess an organization’s conformance to (1)
and (2), it suffices to check whether “All non-source plasma donations are tested for
Hepatitis B”. In other words, (1) and (2) imply the following obligation:

(3) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B.

There are a variety of logics in which one can capture the interpretation of (3), as
needed for conformance. Now suppose we have a sentence that refers to (1):

(4) To test for Hepatitis B, you must use a screening test kit.

The reference is more indirect here, but the interpretation is: “If (1) requires a test,
then the test must be performed using a screening test kit”. A bloodbank is not prevented
from using a different kind of test for source plasma donations. (4) can be represented
by first producing (3), and then inferring that (3) and (4) imply the following:

(5) Every non-source plasma donation must be tested for evidence of infection due
to Hepatitis B using a screening test kit.

It is easy to represent the interpretation of (5) directly in a logic. However, (5) has
a complex relationship to the sentences from which it was derived, i.e., (1), (2) and (4).
The derivation takes the form of a tree:

(5)

(3)

(1) (2)

(4)

To summarize, if one wishes to use a logic with no support for referring to other
sentences, derived obligations must be created manually. We argue that the manual cre-
ation of derived obligations is impractical in terms of the amount of effort involved. We
give two (pragmatic) reasons. First, the derived obligation can become very complex.
The full version of statement (1) in the CFR contains six exceptions, and these excep-
tions in turn have statements that qualify them further. It is difficult to inspect a derived
obligation, and determine if it captures the intended interpretation of the sentences from
which it came. Second, references between laws are frequent, amplifying the effort in
creating a logic representation. In [12], we discuss lexical statistics which suggest that
references are a common way of establishing relationships between sentences in the
CFR, and [13, 4] point out their frequency in other bodies of regulation.

We advocate an approach that allows us to introduce references into the syntax of
the logic, and resolve references during evaluation.

3 Representing Regulatory Documents in Logic

In this section, we extend linear temporal logic (LTL) to distinguish between obligations
and permissions, and allow references between statements. We begin, in Section 3.1, by
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representing a bloodbank as a run or trace. LTL is extended to distinguish between
obligations and permissions, leading to definitions of conformance. We then extend the
logic to allow sentences to refer to others. Section 3.2 gives an informal example-driven
account, and Section 3.3 provides a formal account. The complexity of conformance
checking is examined in Section 3.4

Sections 3.1 is intended as background, in which we discuss several underlying
assumptions. Our goal is to focus on the problem of references, and to treat the repre-
sentation of obligations and permissions as an important but orthogonal issue.

3.1 Predicate-based Linear Temporal Logic (PredLTL)

Representing regulated operations:Given the need to demonstrate conformance to
the regulation in case of an audit, regulated organizations such as bloodbanks keep
track of their operations in a database, for example, donor information and the tests they
perform. Such a system can be thought of abstractly as a relational structure evolving
over time. At each point in time (state), there are a set of objects (such as donations and
donors) and relations between the objects (such as an association between a donor and
her donations). The state changes by the creation, removal or modification of objects.
We represent this as a run.

Definition 1 (A Run of a System).Given a setO (of objects) and countable sets
Φ1, ..., Φn (whereΦj is a set of predicate names of arityj), a run of a systemR(O,
Φ1, ..., Φn), abbreviated asR, is a tuple(r, π1, ..., πn) where:

– r : N → S is a sequence of states.N is the set of natural numbers, andS is a set
of states.

– πj : Φj × S → 2Oj

is a truth assignment to predicates of arityj. Givenp ∈ Φj ,
we will say thatp(o1, ..., oj) is true at states iff (o1, ..., oj) ∈ πj(p, s).

Given a runR and a timei ∈ N , the pair(R, i) is called a point (statements in
linear temporal logic are evaluated at points). Given the predicate names(Φ1, ..., Φn),
the corresponding space of runs is denoted byR(Φ1, ..., Φn), abbreviated asR.

Conceivably, we could construct a state-transition diagram representing all possible
behaviors of the system and explore conformance from the model checking perspective
(e.g., [14]). We chose to restrict our attention to traces for two reasons. First, checking
of traces is easier to explain, and all interesting theoretical and algorithmic aspects that
we explore in this paper manifest themselves in trace checking. Second, many parts
of the operations of an organization, such as a bloodbank, do not involve computers.
A complete model of operations has to include a model of human users, which is a
research problem in its own right that is well beyond the scope of this paper. However,
if a finite-state model of an organization can be created, the propositional version of the
logic developed here can be adapted to work with available model-checkers.
Representing the regulation:The logic that we define in this section is a restricted
fragment of first-order modal logic. The restriction is that we allow formulas with free
variables, but no quantification over objects. Formulas will be interpreted using the uni-
versal generalization rule, i.e., over all assignments to free variables. The restrictions
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are similar in spirit to the logic programing approaches to regulation [9, 10]. PredLTL
is less expressive than the variants of first-order logic used by [3, 5]. However, when
references are added, the logic becomes more expressive than first-order logic (Sec-
tion 3.4).

Definition 2 (Syntax).Given setsΦ1, ..., Φn (of predicate names) and a set of variables
X , the languageL(Φ1, ..., Φn, X), abbreviated asL, is the smallest set such that:

– p(y1, ..., yj) ∈ L wherep ∈ Φj and(y1, ..., yj) ∈ Xj.
– If ϕ ∈ L, then¬ϕ ∈ L and2ϕ ∈ L. If ϕ, ψ ∈ L, thenϕ ∧ ψ ∈ L.

Disjunctionϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) and implicationϕ ⇒ ψ = ¬ϕ ∨ ψ are derived
connectives. The temporal operator is understood in the usual way:2ϕ (ϕ holds and
will always hold (globally)).3ϕ (ϕ will eventually hold) is defined as¬2¬ϕ.

We now extend the syntax to express normative statements in a body of regulation,
by distinguishing between obligations and permissions.

Definition 3 (Syntax of Regulation).Given a finite set of identifiersID, a body of
regulationReg is a set of statements such that for eachid ∈ ID, there existϕ, ψ ∈ L

such that either:id.o: ϕ ; ψ ∈ Reg, or id.p: ϕ ; ψ ∈ Reg

id.o: ϕ ; ψ (id.p: ϕ ; ψ) is read as: “it is obligated (permitted) that the pre-
conditionϕ leads to the postconditionψ”. The distinction between preconditions and
postconditions corresponds to the distinction between input and output in input-output
logic [15].

Definition 4 (Semantics).Given a runR = (r, π1, ..., πn), i ∈ N , ϕ ∈ L, and an
assignmentv : X → O, the relation(R, i, v) |= ϕ is defined inductively as follows:

– (R, i, v) |= p(y1, ..., yj) iff (o1, ..., oj) ∈ πj(p, r(i)) whereok = v(yk) if yk ∈ O.
– The semantics of conjunction and negation is defined in the usual way.
– (R, i, v) |= 2ϕ iff for all k ≥ i : (R, k, v) |= ϕ

We extend the semantic relation to regulatory statements. We take|= to stand for
“conforms to”:

– (R, i, v) |= id.o: ϕ ; ψ iff (R, i, v) |= ϕ⇒ ψ (⇒ is implication)
– (R, i, v) |= id.p: ϕ ; ψ. Runs vacuously conform to permissions. Permissions will

become relevant when references from obligations are present (Section 3.2).

Consider again our example from Section 2. We use three predicates defined as
follows. d(x) is true iff x is a donation.sp(x) is true iff x consists of source plama.
test(x) is true iff x is tested for Hepatitis B. Statement (3) is represented as:

3.o: d(x) ∧ ¬sp(x) ; 3test(x)
Statement (2) is be represented as: 2.p: d(y) ∧ sp(y) ; ¬3test(y). However,

statement (1) cannot be represented directly.
We will now define conformance, and then discuss the various definitions in the

context of related work. Given a runR, letV (R) denote the set of variable assignments.
Conformance is defined using the notion of validity. A formulaϕ is valid at the point
(R, i), denoted(R, i) |= ϕ, iff for all v ∈ V (R): (R, i, v) |= ϕ. A formulaϕ is valid
onR iff it is valid at all points, that is,R |= ϕ iff for all i ∈ N : (R, i) |= ϕ.
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Definition 5 (Run Conformance).Given a body of regulationReg and a runR rep-
resenting the operations of an organization, we say thatR conforms to the regulation
iff for all obligations id.o: ϕ ; ψ ∈ Reg, we haveR |= id.o: ϕ ; ψ.

Discussion:The deontic concepts of obligation and permission are treated as properties
of sentences. Only obligations matter for conformance. If a non-source plasma donation
is not tested, there is a problem. On the other hand, a bloodbank may choose to test a
donation of source plasma or not. In assessing conformance, the function of a permis-
sion is to serve as an exception to an obligation, and in this indirect manner it becomes
relevant. We will give a semantics to this function of permissions in Section 3.2. Such
a treatment of permissions has its basis in the legal theory of Ross [6].

Ross’ approach to permission is by no means the only one. Theories have distin-
guished between various kinds of permission (cf. [7]), the most common distinction
being that of positive and negative permission. We discuss the analysis by Makinson
and van der Torre [16].ϕ is said to positively permitted iff it is explictly permitted by
the laws, andϕ is negatively permitted iff it is not forbidden. The key issue is whether
positive permissions can give rise to violations. In regulations phrased exclusively in
terms of permissions, it is desirable to say thatif ϕ denotes a “relevant” condition
which is not explicitly permitted, then it should not hold in conforming implementa-
tions. While this has been analysed as a property of permission, following Ross, we
take such violations as arising from an implicit obligation, i.e., the italicized clause.
This implicit obligation can be represented using the techniques we discuss in Section
3.2, provided that the relevance of the condition is known.

In the formulation here, obligations and permissions are top-level operators and
cannot be negated. This restriction can be removed by treating obligation and permis-
sion as KD modalities (c.f. [17]), and using a many-valued interpretation to decide if a
run belongs to the set of ideal runs. However, we avoid this to simplify presentation. A
more crucial restriction is that iterated deontic constructs cannot be expressed directly,
i.e., sentences of the form “required to allow x” or “allowed to require x.”. One has to
decide what top-level obligations or permissions are implied by these constructs. To our
knowledge, handling iterated constructs is an open problem in deontic logic [18].

3.2 References to Other Laws – An Informal Description

In this section, we give an informal account ofreference logic(RefL), which is used
to handle references. We extend the syntax of PredLTL withan inference predicate
byId(ϕ), where Id is a set of identifiers.byId(ϕ) is read as “by the laws in Id,ϕ holds”.
There are two restrictions: (a)ϕ is a statement in PredLTL (Definition 2) and (b) the
predicatebyId(ϕ) can appear only in preconditions of laws. These restrictions are sim-
ilar to those that apply to justifications in default logic [8].

Consider again our example statements (1) and (2), which are represented in RefL
as follows:

– 1.o: d(x) ∧ ¬by{2}(ϕ(x)) ; 3test(x), and
– 2.p: d(y) ∧ sp(y) ; ¬3test(y)
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In the obligation above, the subformulaby{2}(ϕ(x)) is understood as “by the law (2)
the formulaϕ(x) holds”. It remains to define the formulaϕ(x). Intuitively, this should
be the negation of the postcondition of (1). In other words, if¬3test(x) follows from
(2), then the postcondition of (1) need not hold. This gives us:

1.o: d(x) ∧ ¬by{2}(¬3test(x)) ; 3test(x)

We interpret the predicateby{2}(¬3test(x)), by letting formulas have output. In
other words, when the precondition of an obligation or permission is true at a point, the
point isannotatedwith the postcondition.

Time ObjectsPredicates Annotations
1 o1 d(o1), sp(o1), ¬test(o1) 2: ¬3test(o1)

2 o1 d(o1), sp(o1), ¬test(o1) 2: ¬3test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: 3test(o2)

3 o1 d(o1), sp(o1), test(o1) 2: ¬3test(o1)
o2 d(o2), ¬sp(o2), ¬test(o2) 1: 3test(o2)

Table 1.A run and its annotations

Table 1 shows a run of a bloodbank augmented with annotations. First, an object
o1 is entered into the system.o1 is a donation of source plasma (d(o1) andsp(o1) are
true). When a donation is added, its test predicate is initially false. Then, an objecto2
is added, which is a donation but not of source plasma. In the third step, the objecto1
is tested. At this point, unless the run is extended to testo2 as well, it does not conform
with the regulation. We now discuss how the annotations are arrived at and used to
assess the regulation.

We begin by defining an annotation. Given a runR, an assignmentv ∈ V (R), and
ϕ ∈ L, v(ϕ) is the formula obtained by replacing all variablesx by the unique name for
the objectv(x). We assume that all variables are free. Note thatv(ϕ) is equivalent to
a propositional LTL formula, as the variables have been replaced by constant symbols.
An annotation, id:v(ϕ), is a propositional LTL formula associated with an identifier.

Given a point(R, i) and an assignmentv ∈ V (R), first we consider the permission
2.p: d(y) ∧ sp(y) ; ¬3test(y). If (R, i, v) |= d(y) ∧ sp(y), then(R, i) is annotated
with 2: v(¬3test(y)). Otherwise, there is no annotation.

Since the precondition of statement (2) is true for the assignment ofy to o1, we
have the annotation 2:¬3test(o1) at all points. However, sinceo2 is not a donation of
source plasma, there is no correponding annotation.

Now consider the formulaby{2}(¬3test(x)). This is evaluated as follows. We eval-
uate 2.p: d(y)∧ sp(y) ; ¬3test(y) at (R, i) w.r.t. all variable assignments. Letψ2 be
the conjunction of the annotations produced by the formula for (2).

(R, i, v) |= by{2}(¬3test(x)) iff |= ψ2 ⇒ v(¬3test(x))

Notice that this requires a validity check in propositional LTL, which can be decided
in space polynomial in the size of the formula [19].
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Returning to the run in Table 1, the states are annotated with 2:¬3test(o1) and|=
¬3test(o1) ⇒ ¬3test(o1), sinceϕ ⇒ ϕ is a propositional tautology. So(R, i, v) |=
by{2}(¬3test(x)) whenv(x) = o1.

We can evaluate 1.o: d(x) ∧ ¬by{2}(¬3test(x)) ; 3test(x) similarly by an-
notating states with3test(x) if the precondition holds. In Table 1, this results in an
annotation of 1:3test(o2) on the appropriate states. Ifo2 is never tested, the run will
be declared non-conforming (by Definition 5), but the annotation will remain. This lets
a law which depends on (1) draw the correct inference.

3.3 Reference Logic (RefL)

The semantic evaluation outlined in Section 3.2 works only when the references are
acyclic, since an order of evaluation needs to be defined. To handle cycles, we adopt
a fixed-point technique from Kripke’s theory of truth [11]. The idea is to move to a
three-valued logic where the third (middle) value stands forungrounded. Initially, all
statements are ungrounded and there are no annotations. Using an inflatonary function,
we add annotations until a fixed point in reached. In this section, we define this in-
flationary function and show that it has least and maximal fixed points. We begin by
extending the syntax described in Section 3.1:

Definition 6 (Syntax of Preconditions).Given setsΦ1, ..., Φn (of predicate names), a
set of variablesX , and a finite set of identifiersID, the languageL′(Φ1, ..., Φn, X, ID),
abbreviated asL′, is the smallest set such that:

– p(y1, ..., yj) ∈ L′ wherep ∈ Φj and(y1, ..., yj) ∈ Xj.
– If ϕ ∈ L′, then¬ϕ ∈ L′ and2ϕ ∈ L′. If ϕ, ψ ∈ L′, thenϕ ∧ ψ ∈ L′

– If Id ⊆ ID andϕ ∈ L(Φ1, ..., Φn, X) (Definition 2), thenbyId(ϕ) ∈ L′

The syntax of regulatory statements (Definition 3) is modified so that the precondi-
tions of laws are statements fromL′. We useid.x : ϕ ; ψ to stand for a normative
statement (either obligation or permission). We now define an annotation:

Definition 7 (Annotation). Given a runR, a set of identifiersID, an assignment
v ∈ V (R), and a body of regulationReg, an annotation is a statement id:v(ψ)
such thatid ∈ ID and id.x : ϕ ; ψ ∈ Reg. The set of annotations is denoted by
A(R, ID,Reg), abbreviatedA.

Definition 8 (Annotation Function). Given a runR, an annotation functionα : N →
2A assigns a set of annotations to each point. We useα.Id(i) to denote the set of
annotations id:ψ ∈ α(i) such thatid ∈ Id.

We will formalize the semantics using the fixed point technique outlined in [11].
Before we turn to the formal definitions, we sketch some of the key ideas involved.

Let us assume as given a runR. Statements inL′ andReg are divided into three
classes corresponding to true (T(i, v)), false (F(i, v)) and ungrounded (U(i, v)) w.r.t.
the timei ∈ N and assignmentv ∈ V (R). Intuitively, U(i, v) is the set of statements
that are waiting for the evaluation of another statement.
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As we discussed in Section 3.2, to determine whetherbyId(ϕ) ∈ T(i, v), we need
to check if there is a set of annotations which implyv(ϕ). We construct the annotation
functionα such that for all assignmentsv, we have id:v(ψ) ∈ α(i) iff ϕ ∈ T(i, v) for
someid.x : ϕ ; ψ ∈ Reg andid ∈ Id. We will say thatbyId(ϕ) ∈ T(i, v) only if
α.Id(i) ∪ {v(¬ϕ)} is not satisfiable.

To determine whetherbyId(ϕ) ∈ F(i, v), we need to ensure that there is no un-
grounded statement that could make it true. To check this condition, we construct the
annotation functionα′ such that id:v(ψ) ∈ α′(i) iff ϕ ∈ T(i, v) ∪ U(i, v) for some
id.x : ϕ ; ψ ∈ Reg andid ∈ Id. The condition for falsity w.r.t.α′ is simply the
negation of the condition for truth w.r.t.α. More formally,byId(ϕ) ∈ F(i, v) only if
α′.Id(i) ∪ {v(¬ϕ)} is satisfiable.

When there are circular references, one cannot always evaluate a statement to be true
or false. The Nixon-diamond problem (introduced in [8]) is a well-known example. We
rephrase it in “legalese”:

(6) Except as otherwise specified, Quakers must be pacifists.

(7) Except as otherwise specified, Republicans must not be pacifists.

These statements can be represented in RefL as follows:
6.o: q(x) ∧ ¬by{6,7}(¬p(x)) ; p(x), and
7.o: r(x) ∧ ¬by{6,7}(p(x)) ; ¬p(x)
Suppose we are given a state with an individualn (for Nixon), who is both quaker

and republican, i.e.,q(n) andr(n) hold. How should we evaluate the statements above?
[11] suggests two answers to this question: (A) The statements are neither true or false
(they are ungrounded). This corresponds to skeptical reasoning in non-monotonic logic.
(B) Exactly one ofby{6,7}(p(n)) andby{6,7}(¬p(n)) is true, which leads us to con-
cludep(n) (by (6)) or¬p(n) (by (7)) resply. This corresponds to credulous reasoning
in non-monotonic logic.

In the semantics we give below, different answers correspond to different fixed
points. We refer the reader to [11] for examples and discussion of the various possi-
bilities with regard to fixed points. The choice of what to do when there are multiple
fixed points depends on the application, and we discuss this issue further at the end of
this section.

Definition 9 (Evaluation). Given a runR and a body of regulationReg, an evaluation
is a tupleE = (T,F,U), whereT, F andU are functions of the formN × V (R) →

2L+

, whereL+ = Reg ∪ L′. Furthermore, for alli ∈ N and v ∈ V (R), we have
T(i, v) ∩ F(i, v) = ∅ andU(i, v) = 2L+

− (T(i, v) ∪ F(i, v)).
Given an evaluationE, αE is the annotation such that for alli ∈ N andid ∈ ID,

we have id:v(ψ) ∈ αE(i) iff ϕ ∈ T(i, v), whereid.x : ϕ ; ψ ∈ Reg. Similarly,α′
E

is the annotation such that id:v(ψ) ∈ α′
E(i) iff ϕ ∈ T(i, v) ∪ U(i, v).

Definition 10 (Consistent Evaluation).An evaluationE is consistent iff for alli ∈ N

andv ∈ V (R), T(i, v) = F(i, v) = ∅, or T(i, v) andF(i, v) are sets such that:

1. p(x1, ..., xj) ∈ T(i, v) iff (v(x1), ..., v(xj)) ∈ πj(p, r(i))
p(x1, ..., xj) ∈ F(i, v) iff (v(x1), ..., v(xj)) 6∈ πj(p, r(i))
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2. If φ ∈ T(i, v) andψ ∈ T(i, v), thenφ ∧ ψ ∈ T(i, v)
If φ ∈ F(i, v) or ψ ∈ F(i, v), thenφ ∧ ψ ∈ F(i, v)
and similarly for negation and temporal operators

3. If ϕ⇒ ψ ∈ T(i, v), then id.o: ϕ ; ψ ∈ T(i, v)
If ϕ⇒ ψ ∈ F(i, v), then id.o: ϕ ; ψ ∈ F(i, v)
id.p: ϕ ; ψ ∈ T(i, v). Runs vacuously conform to permissions.

4. If byId(ϕ) ∈ T(i, v), thenαE .Id(i) ∪ {v(¬ϕ)} is not satisfiable.
If byId(ϕ) ∈ F(i, v), thenα′

E .Id(i) ∪ {v(¬ϕ)} is satisfiable.

The set of all consistent evaluations for a runR and regulationReg is denoted by
E(R,Reg), abbreviatedE .

Observe that in consistent evaluations, ifbyId(ϕ) ∈ T(i, v), thenαE .Id(i) ∪
{v(¬ϕ)} is not satisfiable (Clause 4 in Definition 10). The converse need not be true.

Definition 11 (Partial Order). Given evaluationsE1 = (T1,F1,U1) and E2 =
(T2,F2,U2, α2), we say thatE1 ≤ E2 iff for all i ∈ N andv ∈ V (R), T1(i, v) ⊆
T2(i, v) andF1(i, v) ⊆ F2(i, v).

The pair(E ,≤), whereE is the set of consistent evaluations is a partially ordered
set (poset).

We now define the inflationary function whose fixed points we will be interested in.

Definition 12 (Inflationary function). Given(E ,≤), the functionI : E → E is defined
as follows. Given a consistent evaluationE1 = (T1,F1,U1), I(E1) is the smallest
consistent evaluationE2 = (T2,F2,U2) such thatE1 ≤ E2, for all i ∈ N and
v ∈ V (R), T2(i, v) 6= ∅, F2(i, v) 6= ∅, andE2 extendsE1.

We say thatE2 extendsE1 iff for all i ∈ N andv ∈ V (R):
If αE1

(i) ∪ {v(¬ϕ)} is not satisfiable, thenbyId(ϕ) ∈ T2(i, v)
If α′

E1
(i) ∪ {v(¬ϕ)} is satisfiable, thenbyId(ϕ) ∈ F2(i, v)

In the rest of the section, we show thatI is well-defined, and has maximal fixed
points and a unique least fixed point. We begin by observing an ordering relation be-
tween annotations that is useful in subsequent proofs:

Proposition 1. Given consistent evaluationsE1 andE2 such thatE1 ≤ E2, and a
set of identifiersId ⊆ ID, for all i ∈ N , we haveαE1

.Id(i) ⊆ αE2
.Id(i) and

α′
E1
.Id(i) ⊇ α′

E2
.Id(i).

The proof follows easily from Definitions 9 and 11. We now show thatI is well-
defined:

Proposition 2. Given(E ,≤) andE1 ∈ E , let E2 ⊆ E be the set of consistent evalu-
ations such thatE2 ∈ E2 iff E1 ≤ E2, for all i ∈ N andv ∈ V (R), T2(i, v) 6= ∅,
F2(i, v) 6= ∅, andE2 extendsE1. Then,E2 has a smallest element.

Proof. GivenE1, we construct the evaluationE2 such that for alli ∈ N andv ∈ V (R):
ϕ ∈ T2(i, v) iff ϕ ∈ T1(i, v) or:
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– ϕ = byId(φ) andαE1
.Id(i) ∪ {v(¬φ)} is not satisfiable.

– ϕ = φ ∧ ψ andφ, ψ ∈ T2(i, v). Similarly for propositions, negation and temporal
operators

F2(i, v) is defined similarly. It is easy to see thatE1 ≤ E2, E2 extendsE1 and the
non-emptiness condition follows from the existence of at least one atomic proposition.
We claim thatE2 is consistent and that it is the smallest evaluation with the requisite
properties.

SupposeE2 is not consistent. Consider the smallestϕ which violates Definition 10.
We obtain a contradiction for each clause in Definition 10. The only non-trivial case is
for ϕ = byId(φ), for which there are two cases.

byId(φ) ∈ T2(i, v) andαE2
.Id(i) ∪ {v(¬φ)} is satisifiable. By Proposition 1,

αE1
.Id(i) ⊆ αE2

.Id(i), and soαE1
.Id(i) ∪ {v(¬φ)} is satisifiable andbyId(ϕ) 6∈

T1(i, v) (sinceE1 is consistent). It follows from the construction thatbyId(ϕ) 6∈
T2(i, v) giving us a contradiction.

byId(φ) ∈ F2(i, v) andα′
E2
.Id(i) ∪ {v(¬φ)} is not satisifiable. By Proposition 1,

α′
E1
.Id(i) ⊇ α′

E2
.Id(i), and soα′

E1
.Id(i) ∪ {v(¬φ)} is not satisifiable andbyId(ϕ) 6∈

F1(i, v) (sinceE1 is consistent). It follows from the construction thatbyId(ϕ) 6∈ F2(i, v)
giving us a contradiction.

We now show thatE2 is the smallest element with the requisite properties, i.e., for
all E′

2 ∈ E2, we haveE2 ≤ E2. The proof is similar to that for consistency. Suppose,
for the sake of contradiction, there existsE′

2 ∈ E2 such thatE′
2 = (T′

2,F
′
2,U

′
2) and

E2 6≤ E′
2. Consider the smallestϕ ∈ L+ such that there existsi ∈ N andv ∈ V (R),

andϕ ∈ T2(i, v) − T
′
2(i, v) or ϕ ∈ F2(i, v) − F

′
2(i, v). Again, the only non-trivial

case is forϕ = byId(φ).
SupposebyId(φ) ∈ T2(i, v)−T

′
2(i, v). SinceE1 ≤ E′

2, byId(φ) 6∈ T1(i, v). There
are two cases. IfαE1

.Id(i)∪{v(¬φ)} is not satisfiable, thenbyId(φ) ∈ T
′
2(i, v) (since

E′
2 extendsE1). This gives us a contradiction. IfαE1

.Id(i)∪{v(¬φ)} is satisfiable, then
byId(φ) 6∈ T

′
2(i, v) (by construction). Again, we have a contradiction. So,byId(φ) 6∈

T2(i, v) − T
′
2(i, v). The other cases are similar. ⊓⊔

The existence of fixed points is established using Zorn’s lemma, which applies to
chain-complete posets. Given the poset(E ,≤), a setE ′ ⊆ E is called a chain (totally
ordered set) iff for allE1, E2 ∈ E ′, we haveE1 ≤ E2 or E2 ≤ E1. A poset is chain
complete iff every chain has a supremum. We now show that(E ,≤) is a chain-complete
poset:

Proposition 3. (E ,≤) is a chain-complete poset.

Proof. Given a chainE ′ ⊆ E , consider the evaluation:
Es = (Ts,Fs,Us), where for alli ∈ N , v ∈ V (R), andϕ ∈ L+:

– ϕ ∈ Ts(i, v) iff there existsE = (T,F,U) ∈ E ′ such thatϕ ∈ T(i, v).
– ϕ ∈ Fs(i, v) iff there existsE = (T,F,U) ∈ E ′ such thatϕ ∈ F(i, v).

Us(i, v) = 2L+

− (Ts(i, v) ∪ Fs(i, v)). It is immediate from the construction that
∀E ∈ E ′ : E ≤ Es. It is also easy to see that ifEs is a consistent evaluation, then it
is the supremum ofE ′. Thus, it suffices to show thatEs is consistent, and this can be
established by an argument similar to the proof of Proposition 2. ⊓⊔
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Lemma 1 (Zorn (c.f. [20])).Every chain complete poset has a maximal element

The existence of maximal fixed points is immediate from Zorn’s lemma and the fact
thatI is inflationary, i.e.,E ≤ I(E). LetE∗ be a maximal element inE , sinceE∗ is
maximal andE∗ ≤ I(E∗) it follows thatE∗ = I(E∗).

To show the existence of a least fixed point, as [11] notes, we will need the obser-
vation thatI is monotonic, i.e., if E1 ≤ E2 thenI(E1) ≤ I(E2). This can be shown
by an argument similar to the proof of Proposition 2. With monotonicity, we obtain the
following corollary to Zorn’s lemma:

Corollary 1. GivenE1 ∈ E , let σ(E1) be the smallest set such that: (a)E1 in E , (b)
if E ∈ σ(E1) thenI(E) ∈ σ(E1), and (c) ifC ⊆ σ(E1) is a non-empty chain, then
Esc ∈ σ(E1), whereEsc is the supremum ofC w.r.t. E . Then:

– σ(E1) is a chain whose supremum is a fixed point ofI
– σ(E1) contains a unique fixed point
– If E1 ≤ E2, thenEs1 ≤ Es2, whereEs1 andEs2 are the suprema ofσ(E1) and
σ(E2) resply., and

– I has a unique least fixed point.

Proof. The fact thatσ(E1) is a chain is used to prove Zorn’s lemma, and we refer the
reader to [20] for a proof.

Let E ′ = σ(E1) and letEs be the supremum ofE ′. SinceE ′ contains its supremum
Es, andI(Es) ∈ E ′ (by definition), we can conclude thatEs = I(Es).

We now claim thatEs is the unique fixed point inE ′. Suppose not. LetE ∈ E ′ be
a fixed point. SinceE 6= Es andEs is the supremum, we haveE < Es. Consider the
setE ′′ such that for allE′ ∈ E ′, E′ ∈ E ′′ iff E′ ≤ E. But now,E1 ∈ E ′′ and for all
E′ ∈ E ′′, we haveI(E′) ∈ E ′′ (for if not E′ ≤ E andI(E) < I(E′), contradicting
the monotonicity ofI). Given a chainC ⊆ E ′′, since for allE′′ ∈ C, we haveE′′ ≤ E,
sup(C) ≤ E (by defintion of supremum). SinceE ′′ ⊂ E ′, we have a contradiction to
the minimality ofE ′. Hence,Es is the unique fixed point inE ′.

GivenE1 ≤ E2, letEs1 andEs2 be the suprema ofσ(E1) andσ(E2) resply. We
claim thatEs1 ≤ Es2. Suppose not. Consider the setE ′′ ⊆ σ(E1) such thatE′

1 ∈ E ′′

iff E′
1 ≤ Es2. But now,E1 ∈ E ′′ and for allE′ ∈ E ′′, we haveI(E′) ∈ E ′′ (for if

notE′
1 ≤ Es2 andEs2 = I(Es2) < I(E′

1), contradicting the monotonicity ofI). The
presence of suprema is similarly verified, giving us a contradiction to the minimality of
σ(E1). HenceEs1 ≤ Es2.

Finally, let E0 = (T0,F0,U0), where for alli ∈ N , v ∈ V (R), T0(i, v) =

F0(i, v) = ∅, andU0(i, v) = 2L+

. Observe that for all consistent evaluationsE, E0 ≤
E and henceEs0 ≤ Es whereEs0 andEs are the suprema ofσ(E0) andσ(E) resply.
Since all suprema are fixed points,Es0 is the least fixed point. ⊓⊔

We summarize the results in the following theorem, which provides a base for ex-
tending RefL with other inference predicates. We discuss the need for other predicates
below, and in Section 5.
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Theorem 1. Given the poset of consistent evaluations(E ,≤) and a functionI : E → E
which is inflationary and monotonic,I has a least fixed point and a maximal fixed point.

Discussion:We now discuss some options in defining conformance, depending on the
needs of the application. The sections of the FDA CFR that we have examined can be
formalized so that there is a unique fixed point, and conformance is simply the satisfac-
tion of obligations at this fixed point.

However, examples discussed in the literature suggest that it may not be desirable
to always have a unique fixed point. A well-known example is that of contrary-to-duty
(CTD) obligations [21]. CTD obligations are those that arise when other obligations
have been violated. Prakken and Sergot [17] point out an inflexibility in casting CTD
structures as an instance of non-monotonic reasoning. We outline how this inflexibility
can be avoided, using alternate definitions of conformance. Consider the following ex-
ample from [15] (similar to one in [17]):The cottage must not have a fence or a dog. If
it has a dog, then it must have both a fence and a warning sign. The question is what
are the obligations when the cottage has a dog. We discuss two possible solutions.

The first solution is to treat the CTD norm as an exception to the first:
1.o: ¬by{2}(f ∨ d) ; ¬(f ∨ d) and 2.o: d ; f ∧w
The propositionsf , d andw correpond to the cottage having a fence, dog and warn-

ing sign resply. Since there is a dog, the precondition of the second law is true, and
this leads to the precondition of the first law being false. So iff ∧ w holds, there is no
violation. However, as [17] points out, it may be useful to detect that the situation is
worse than the one in which there is no dog. In the second solution, we represent the
laws as excluding each other, i.e., we conjoin¬by{1}(¬(f ∧w)) to the precondition of
the second law. At the least fixed point, both obligations are ungrounded, and we get
two maximal fixed points – one in which¬(f ∨d) is obligated, and one in whichf ∧w
is obligated. Sinced holds, there is a violation w.r.t. the former fixed point. In a scenario
where there is no dog, a unique fixed point is obtained.

Our analysis of CTD structures achieves the same effect as the analyses in [17,
15]. However, [17, 15] characterize the CTD norm as presupposing the violation of the
other, and then revising the situation. In future work, we plan to investigate predicates
that capture this presuppositional analysis more directly.

3.4 Complexity

In this section, we discuss upper and lower bounds for the complexity of conformance
checking w.r.t. the least fixed point. Given a runR and regulationReg, we say that
R |= Reg iff all obligations are valid inR at the least fixed point.R is assumed to be
finite in two ways: (a) The set of objectsO is finite, and (b) There existsn, such that
for all j ≥ n, r(n) = r(j), i.e.,R eventually reaches a stable state.

Lemma 2 (Upper Bound).Given a finite runR and regulationReg, R |= Reg can
decided in EXPSPACE (space exponential in the size ofReg)

Proof. (sketch) Corollary 1 can easily be turned into a decision procedure. Given an
evaluationE, it can be shown thatE andI(E) agree on all regulatory preconditions iff



14 Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky

E is a fixed point. So ifE is not a fixed point, there existsi andv such thatI(E) has
strictly fewer ungrounded preconditions. In the worst case, there is at most one change,
andn× |Reg| × |V | steps are required to reach a fixed point, where|V | is the number
of variable assigments. Note that|V | = |O|k whereO is the set of objects andk is the
largest number of distinct variables appearing in a regulatory statement.

To applyI to an evaluationE, we need an explicit representation of the annota-
tion functionαE (for the satisfiablity checks). The worst-case size of the satisfiability
instances is|Reg|× |O|k. Since testing satisifiablity for propositional LTL is PSPACE-
complete [19], applyingI requires EXPSPACE (due to the|O|k factor). We note that
for the fragment of LTL discussed in this paper (using only2 and3) satisfiability is
NP-complete [19], and for this fragmentR |= Reg can be decided in EXPTIME. ⊓⊔

Lemma 3 (Lower Bound).Given a finite runR and regulationReg,R |= Reg is hard
for EXPTIME (time exponential in the size ofReg)

Proof. (sketch) We encode formulas in first-order logic as regulations. Letϕ(x1, ..., xm)
be a first-order formula, wherex1, ..., xm are free variables. Ifϕ(x1, ..., xm) contains
no quantifiers, we represent it by a permission:

Aϕ.p: ϕ(x1, ..., xm) ; qϕ(x1, ..., xm), whereqϕ(x1, ..., xm) is a predicate symbol
that doesn’t appear inϕ(x1, ..., xm). It is easy to see thatv(qϕ(x1, ..., xm)) is available
as an annotation iffϕ(x1, ..., xm) is true w.r.t.v.

For quantified statements we proceed inductively. Given∃y : ϕ(y, x1, ..., xm), we
add two permissions:

A∃y:ϕ.p: by{Aϕ}(qϕ(y, x1, ..., xm)) ; q′(x1, ..., xm)

B∃y:ϕ.p: by{A∃y:ϕ}(q
′(x1, ..., xm)) ; q∃y:ϕ(x1, ..., xm)

Observe thatby{A∃y:ϕ}(q
′(x1, ..., xm)) is true w.r.t. an assignmentv iff v(q′(x1, ...,

xm)) is available as an annotation. And,v(q′(x1, ..., xm)) is available as an annotation
iff byId(ϕ)(qϕ(y, x1, ..., xm)) is true w.r.t.somevariable assignmentv′ that is identical
to v except fory. We can then argue inductively thatv(q∃y:ϕ(x1, ..., xm)) is available
as an annotation iff∃y : ϕ(y, x1, ..., xm) is true w.r.t.v.

Given∀y : ϕ, we use the equivalence∀y : ϕ = ¬∃y : ¬ϕ and proceed as before.
To complete the construction, givenϕ(x1, ..., xm), we add the obligation:

1.o: ¬by{Aϕ}(qϕ(x1, ..., xm)) ; ⊥.
It can be shown that a run with a single state conforms to the regulation iffϕ is

valid at the state. Model-checking for first-order logic is PSPACE-complete (cf. [22]).
It follows that computing the least fixed point is PSPACE-hard.

In encoding first-order formulas, we constructed an acyclic regulation. With cir-
cular references, one can encode reachability computations which cannot be directly
expressed in first-order logic: 1.p: δ(x, z) ∨ (δ(x, y) ∧ by{1}(δ

+(y, z))) ; δ+(x, z)

Here, we assume that each point in a run encodes a graph. The edge relation is given
by δ, andδ+ represents the transitive closure ofδ. It can be shown that at the least fixed
pointv(δ+(x, z)) is available as an annotation iff there is a path fromv(x) to v(z). We
can show an EXPTIME lower bound by a reduction from first-order logic enriched with
a least fixed point predicate (the system YF in [22]). ⊓⊔
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4 Axiomatization

As we discussed in the proof of Lemma 3, RefL contains first order logic enriched with a
least fixed point predicate. It follows from results in [23] that the validity problem isΠ1

1 -
hard, and as a result, it cannot be recursively axiomatized. We focus on axiomatizing
the propositional fragment.

We assume as given a fixed finite domain of quantification, and the variables are
replaced by identifiers for domain elements. Given a set of identifiersID, a proposi-
tionalized body of regulation has one or more statements of the formid.x : ϕ ; ψ

for eachid ∈ ID. For example, the presence ofid.x : ϕ1 ; ψ1 andid.x : ϕ2 ; ψ2

corresponds to different assignments to the variables.
In the presence of multiple fixed points, we can define validity w.r.t. all fixed points,

the least fixed point or maximal fixed points. Axiomatizing validity w.r.t. the least or
maximal fixed points complicates matters, because we need to distinguish between
those formulas that are proved using facts versus those that are proved using inferences.
[24] provides an axiomatization of these three notions of validity for default logic, by
translating the default rules into an autoepistemic logic. While it may be possible to
adapt the translation procedure for RefL, we focus on providing a more direct axioma-
tization. We axiomatize validity w.r.t. all fixed points, and leave open the proof theory
for other notions of validity.

This section is organized as follows. We begin, in Section 4.1, by discussing axioms
for the acyclic fragment of RefL. This lets us clarify the central issues, while avoiding
complications introduced by three-valued reasoning. We then turn to the general case.
Since we have a three valued logic, we will need a different notion of implication.
Section 4.2 gives the necessary extensions to the syntax and an alternate definition of
semantics to facilitate the proofs. In Section 4.3, we provide an axiomatization using
Fitting’s sequent calculus [25]. Completeness is proved in Section 4.4. We conclude, in
Section 4.5, with example derivations that help clarify the definition of conformance,
and show a prototype for the middle value.

4.1 The Acyclic Fragment

In this section, we discuss an axiomatization for the fragment of RefL where the refer-
ences in the regulation are acyclic. This lets us obtain a unique fixed point, and restrict
attention to two-valued reasoning. The following axioms and rules characterize propo-
sitional and temporal reasoning:

A1 All substitution instances of propositional tautologies
A2 2(ϕ⇒ ψ) ⇒ (2ϕ⇒ 2ψ)
A3 2ϕ⇒ ϕ ∧ 22ϕ

R1 From⊢ ϕ⇒ ψ and⊢ ϕ, infer⊢ ψ
R2 From⊢ ϕ infer⊢ 2ϕ

We characterize the inference predicate by the laws it refers to. To axiomatize
byId(ϕ), we need to reason about provability in the languageL (propositional LTL).
We say thatϕ ∈ L is is provable (denoted⊢L ϕ) iff it is an instance of the axioms
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A1-A3, or follows from the axioms using the rules R1 and R2. Crucially, we will use
the negation of provability in the premise of a rule. Similar mechanisms have been used
to axiomatize default logic, e.g., in [24], satisfiability is used in the premise of a rule,
and in [26], a modal language is augmented with an operator for satisfiability.

We begin by developing some notation. Given a set of regulatory statementsF =
{id1.x : ϕ1 ; ψ1, ..., idn.x : ϕn ; ψn}, letFpre = {ϕ1, ..., ϕn} be the set of pre-
conditions,Fpost = {ψ1, ..., ψn} be the set of postconditions, andFid = {id1, ..., idn}
be the set of identifiers. Given a finite set of formulasΓ , we denote the conjunction by
∧

Γ . The conjunction of the empty set is identified with⊤ (a tautology). We use two
rules for the inference predicate:

R3 For allF ⊆ Reg with Fid ⊆ Id, from⊢L

∧

Fpost ⇒ φ, infer⊢
∧

Fpre ⇒ byId(φ)
R4 For allψ ∈ L′, if for all F ⊆ Reg with Fid ⊆ Id, either 6⊢L

∧

Fpost ⇒ φ, or
⊢ ψ ⇒ ¬

∧

Fpre, then infer⊢ ψ ⇒ ¬byId(φ).

Informally, R3 says thatbyId(φ) is true, if there exists a set of laws whose post-
conditions implyφ, and whose preconditions are true. R4 says thatbyId(φ) is false, if
one of the preconditions is false for all sets of laws whose postconditions implyφ. In
particular, if 6⊢L

∧

Fpost ⇒ φ for all appropriate subsets, then⊢ ⊤ ⇒ ¬byId(φ), and
using R1,⊢ ¬byid(φ).

The rules have an equivalent axiomatic characterization, which is important in es-
tablishing completeness. Givenφ ∈ L, let F(Id,φ) be the set of subsets (F ⊆ Reg

with Fid ⊆ Id) such thatF ∈ F iff ⊢L

∧

Fpost ⇒ φ. Let Γ(Id,φ) be the set such
that ¬

∧

Fpre ∈ Γ(Id,φ) iff F ∈ F(Id,φ). Finally, let ∆(Id,φ) be the set such that
∧

Fpre ∈ ∆(Id,φ) iff F ∈ F(Id,φ).

Proposition 4. The following are provable:

1. ⊢
∧

Γ(Id,φ) ⇒ ¬byId(φ)
2. ⊢ byId(φ) ⇒

∨

∆(Id,φ)

The first claim is an immediate consequence of R4. And, the second claim follows from
the first by propositional reasoning. It is easy to show that the axioms A1-A3, together
with Proposition 4, and the rules R1 and R2 imply the rules R3 and R4. The inference
predicate behaves like a modality:

Proposition 5. ⊢ byId(ϕ⇒ ψ) ⇒ (byId(ϕ) ⇒ byId(ψ))

We will prove this property in the general setting, in Section 4.3 (Proposition 11). The
axioms and rules presented here extend naturally to the three-valued setting. We begin
by extending the syntax with the appropriate implication connective for a three-valued
logic. We give an alternate definition of the semantics, to facilitate the proofs.

4.2 Syntactic and Semantic Preliminaries

We will need two extensions to the syntax ofL+. First, we add constants for truth values
(T = {⊤, ?,⊥}). The true values are totally ordered, i.e.,⊤ >? > ⊥. Second, we add
the natural implication connectiveϕ ⊃ ψ.
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We now give a different but equivalent definition of the semantics, to facilitate the
proofs. A runR = (r, π) is a pair, wherer is a sequence of states, andπ is a truth
assignment to atomic propositions. Statements inL (propositional LTL) are evaluated
at points(R, i). We defineval(ϕ,R, i) inductively as follows:

– val(p,R, i) = ⊤ iff p ∈ π(r(i)). Otherwise,⊥.
– Conjunction and negation are defined in the usual way
– val(ϕ ⊃ ψ,R, i) = t, wheret is the greatest truth value such thatval(ϕ,R, i)∧t ≤

val(ψ,R, i). Since statements inL are two valued,ϕ ⊃ ψ ≡ ϕ⇒ ψ.
– val(2ϕ,R, i) =

∧

{val(ϕ,R, j) |j ≥ i}

We say thatϕ ∈ L is valid iff for all points (R, i), we haveval(ϕ,R, i) = ⊤.
For statements inL+, in addition to a point(R, i), we need two annotation functions
(α, α′). We defineval(α,α′) as follows:

– val(α,α′)(t, R, i) = t for t ∈ T
– val(α,α′)(byId(ϕ), R, i) = ⊤ if

∧

α.Id(i) ⊃ ϕ is valid
val(α,α′)(byId(ϕ), R, i) = ? if

∧

α′.Id(i) ⊃ ϕ is valid
val(α,α′)(byId(ϕ), R, i) = ⊥ otherwise

– For all other formulas the definition is as before. In the three-valued settingϕ ⊃ ψ

andϕ⇒ ψ are not identical.

We say that(α, α′) is a fixed pointfor a runR iff for all i ∈ N andid.x : ϕ ; ψ:

– id: ψ ∈ α(i) iff val(α,α′)(ϕ,R, i) = ⊤
– id: ψ ∈ α′(i) iff val(α,α′)(ϕ,R, i) ≥ ?

It follows that for alli ∈ N , α(i) ⊆ α′(i). We now define satisfiability and validity
at a point:

– ϕ is satisfiable at(R, i) iff val(α,α′)(ϕ,R, i) = ⊤ for some fixed point(α, α′)
– ϕ is valid at(R, i) iff val(α,α′)(ϕ,R, i) = ⊤ for all fixed points(α, α′)

Finally, we say thatϕ is valid iff ϕ is valid at all points. We are now ready to
axiomatize RefL.

4.3 Sequent Calculus

We use Fitting’s sequent calculus [25]. A sequent is a statement of the formΓ →
∆, whereΓ and∆ are finite sets ofimplications. A sequent is valid at a point(R, i)
iff for all fixed points (α, α′), eitherval(α,α′)(X,R, i) 6= ⊤ for someX ∈ Γ , or
val(α,α′)(X,R, i) = ⊤ for someX ∈ ∆. A sequent is valid iff it is valid at all points.
Following [25], we use lower case letters for truth values, and upper case letters for
formulas.

We begin by reviewing the axioms and rules for propositional and temporal reason-
ing. All the rules are given in [25]. We introduce some additional axioms for negation
and the temporal operators.
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Basic Axioms and Rules:
X → X

Γ → ∆
(thinning)

Γ ∪ Γ ′ → ∆ ∪∆′

Γ → ∆,X Γ,X → ∆
(cut)

Γ → ∆

A ⊃ B,B ⊃ C → A ⊃ C

Truth Value Axioms and Rules:

Γ, t ⊃ A→ ∆, t ⊃ B (∀t ∈ T )
(t ⊃)

Γ → ∆,A ⊃ B

Γ,B ⊃ t→ ∆,A ⊃ t (∀t ∈ T )
(⊃ t)

Γ → ∆,A ⊃ B

→ a ⊃ b if a ≤ b

a ⊃ b→ if a 6≤ b

→ ⊤ ⊃ p, p ⊃ ⊥ (for all atomic propositions p)

The last axiom ensures that LTL formulas are either true or false. The middle value
arises only due to the inference predicate.

Proposition 6. The following are provable:
→ A ⊃ ⊤
→ ⊥ ⊃ A

→ A ⊃ A

Proof. We prove the first claim:

→ t ⊃ ⊤
(thinning)

t ⊃ A→ t ⊃ ⊤
(t ⊃)

→ A ⊃ ⊤

⊓⊔

In [25] and here, the proof of completeness makes crucial use of a derived rule:

Proposition 7 ([25]).The following is a derived rule:

Γ,A ⊃ t, t ⊃ A→ ∆ (∀t ∈ T )

Γ → ∆
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Proof. [25] gives a proof of this derived rule for any finite lattice. We use the fixed
lattice to give a simpler proof. We are given thatΓ,A ⊃ ⊤,⊤ ⊃ A → ∆. By Proposi-
tion 6,→ A ⊃ ⊤. Using cut, we getΓ,⊤ ⊃ A→ ∆. We can now derive:

Γ,⊤ ⊃ A→ ∆ ⊤ ⊃ ?, ? ⊃ A→ ⊤ ⊃ A
(cut)

Γ → ∆,⊤ ⊃ ?, ? ⊃ A ⊤ ⊃ ? →
(cut)

Γ → ∆, ? ⊃ A

Similarly, we can deriveΓ → ∆,A ⊃ ? fromΓ,A ⊃ ⊥,⊥ ⊃ A→ ∆. Then, given
Γ,A ⊃ ?, ? ⊃ A→ ∆, two applications of cut gives usΓ → ∆. ⊓⊔

Conjunction Axioms:
→ A ∧B ⊃ A

→ A ∧B ⊃ B

C ⊃ A,C ⊃ B → C ⊃ A ∧B

Negation Axioms:
→ A ⊃ ¬¬A

→ ¬¬A ⊃ A

A ⊃ B → ¬B ⊃ ¬A

→ a ⊃ ¬b (a = ¬b)

→ ¬b ⊃ a (a = ¬b)

Implication Axioms : We treat implication as right associative, i.e.,A ⊃ B ⊃ C ≡
A ⊃ (B ⊃ C).

A ∧B ⊃ C → A ⊃ B ⊃ C

A ⊃ B ⊃ C → A ∧B ⊃ C

We now establish some useful facts about implications, which are useful in deriving
properties of modalities:

Proposition 8. The following are provable:

A ⊃ B → t ⊃ A ⊃ B

⊤ ⊃ A ⊃ B → A ⊃ B

t ⊃ A ⊃ B, t ⊃ A→ t ⊃ B
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Proof. For the first claim:

t ∧A ⊃ A,A ⊃ B → t ∧A ⊃ B → t ∧A ⊃ A
(cut)

A ⊃ B → t ∧A ⊃ B

Now we can derive:

A ⊃ B → t ∧A ⊃ B t ∧A ⊃ B → t ⊃ A ⊃ B
(cut)

A ⊃ B → t ⊃ A ⊃ B

For the second claim, we need the observation that→ A ⊃ ⊤ ∧A is provable:

A ⊃ ⊤, A ⊃ A→ A ⊃ ⊤ ∧A → A ⊃ ⊤ → A ⊃ A
(2 cuts)

→ A ⊃ ⊤ ∧A

A ⊃ ⊤ ∧A,⊤ ∧A ⊃ B → A ⊃ B → A ⊃ ⊤ ∧A
(cut)

⊤ ∧A ⊃ B → A ⊃ B

Now using the axiom⊤ ⊃ A ⊃ B → ⊤ ∧ A ⊃ B, an application of cut gives us
⊤ ⊃ A ⊃ B → A ⊃ B.

Finally, for the third claim, we need the observation that→ (A ⊃ B) ∧ A ⊃ B

is provable. By Proposition 6,→ A ⊃ A, and so,→ (A ⊃ B) ⊃ A ⊃ B. Using the
implication axiom(A ⊃ B) ⊃ A ⊃ B → (A ⊃ B) ∧ A ⊃ B, an application of cut
gives us the desired result.

t ⊃ (A ⊃ B) ∧A, (A ⊃ B) ∧A ⊃ B → t ⊃ B → (A ⊃ B) ∧A ⊃ B

t ⊃ (A ⊃ B) ∧A→ t ⊃ B

t ⊃ A ⊃ B, t ⊃ A→ t ⊃ (A ⊃ B) ∧A t ⊃ (A ⊃ B) ∧A→ t ⊃ B

t ⊃ A ⊃ B, t ⊃ A→ t ⊃ B

⊓⊔

Temporal Reasoning:

a1 ⊃ A1, ..., an ⊃ An → b ⊃ B (n ≥ 0)
(TNecc)

a1 ⊃ 2A1, ..., an ⊃ 2An → b ⊃ 2B

→ 2A ⊃ A ∧ 3A ∧ 22A

We can now prove the distribution axiom:

Proposition 9. The following is provable:

→ 2(A ⊃ B) ⊃ 2A ⊃ 2B
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Proof. By Proposition 8,t ⊃ A ⊃ B, t ⊃ A → t ⊃ B. Using TNecc, we gett ⊃
2(A ⊃ B), t ⊃ 2A→ t ⊃ 2B. It is easy to derive:

t ⊃ 2(A ⊃ B) ∧ 2A→ t ⊃ 2B

Using the rule(t ⊃), we get→ 2(A ⊃ B)∧2A ⊃ 2B. The desired result follows
using the implication axiom. ⊓⊔

Rules for the Inference Predicate:
We now introduce two rules for the inference predicate, analogous to the rules that

we discussed in Section 4.1. We begin with a semantic characterization.
Given a set of regulatory statementsF = {id1.x : A1 ; B1, ..., idn.x : An ;

Bn}, letFpre = {A1, ...An} be the set of preconditions,Fpost = {B1, ..., Bn} be the
set of postconditions, andFid = {id1, ..., idn} be the set of identifiers.

Given a set of identifiersId, letRegId be the set of subsets of regulatory statements
F such thatFid ⊆ Id. GivenC ∈ L, letReg(Id,C) be the setsF ∈ Reg.Id such that
∧

Fpost ⊃ C is valid. Given a point(R, i) and a fixed point(α, α′):

val(α,α′)(byId(C), R, i) =
∨

{

val(α,α′)(
∧

Fpre, R, i)|F ∈ Reg(Id,C)

}

In other words,byId(C) is true iff there is a set of laws (F with Fid ⊆ Id) such
that (a)C can be inferred from the postconditions, and (b) the preconditons are true.
Similarly,byId(C) is false iff for all appropriate sets of laws such thatC can be inferred
from the postconditions, one of the preconditions is false.

To axiomatizebyId(C), we need to reason about provability in the languageL

(propositional LTL). We say that a sequent in the languageL is provable (denoted
Γ →L ∆) iff it is provable using the axioms and rules introduced previously. As we
discussed in Section 4.1, we will need to use the negation of provability in the premise
of a rule. The rules are as follows:

F = {id1.x : A1 ; B1, ..., idn.x : An ; Bn} ⊆ Reg, Fid ⊆ Id

→L B1 ∧ ... ∧Bn ⊃ C
(RBy1)

t ⊃ A1, ..., t ⊃ An → t ⊃ byId(C)

For all F = {id1.x : A1 ; B1, ..., idn.x : An ; Bn} ⊆ Reg, Fid ⊆ Id

If →L B1 ∧ ... ∧Bn ⊃ C then Γ → A1 ⊃ t, ..., An ⊃ t
(RBy2)

Γ → byId(C) ⊃ t

Informally, RBy1 says thatbyId(C) is true, if there existsF ∈ Reg(Id,C) such that
the preconditions are true. RBy2 says thatbyId(C) is false, if one of the preconditions
is false (for allF ∈ Reg(Id,C)). In particular, if→L B1 ∧ ...∧Bn ⊃ C is not provable
for all appropriate subsets, then→ byId(C) ⊃ ⊥, as the premise of RBy2 is vacuously
satisfied.

We now develop some notation that is useful in several subsequent proofs. Given
C ∈ L, let F(Id,C) be the set of subsets (F ⊆ Reg with Fid ⊆ Id) such thatF ∈ F
iff →L

∧

Fpost ⊃ C. Let∆(Id,C)(t) be the set such thatt ⊃
∧

Fpre ∈ ∆(Id,C)(t) iff
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F ∈ F(Id,C). Finally, letΓ(Id,C)(t) be the set such that
∧

Fpre ⊃ t ∈ Γ(Id,C)(t) iff
F ∈ F(Id,C).

Proposition 10. The following are provable:

Γ(Id,C)(t) → byId(C) ⊃ t

t ⊃ byId(C) → ∆(Id,C)(t)

Proof. The first claim is immediate from RBy2. For the second claim, we show the
proof for t = ⊤. By propositional reasoning, the following is provable:

→ ⊤ ⊃ A,A ⊃ ? (∀A ∈ L+)

From the first claim,ΓC(?) → byId(C) ⊃ ?, and it follows that:

⊤ ⊃ byId(C), ΓC(?) →

For eachA ⊃ ? = X such thatX ∈ ΓC(?), we have→ ⊤ ⊃ A,X . Using cut, we get:

⊤ ⊃ byId(C), ΓC(?) − {X} → ⊤ ⊃ A

SinceΓC(?) is finite, repeated applications of cut will give us:

⊤ ⊃ byId(C) → ∆C(⊤)

⊓⊔

We can show that the inference predicate behaves like a modality, by deriving a
weaker version of the necessitation rule:1

Proposition 11. The following is a derived rule:

→L D1 ∧ ... ∧Dn ⊃ C

→ byId(D1) ∧ ... ∧ byId(Dn) ⊃ byId(C)

Proof. By Proposition 10,t ⊃ byId(Di) → ∆(Id,Di)(t) is provable for1 ≤ i ≤ n. We
construct∆ such that for eacht ⊃ Ai ∈ ∆(Id,Di)(t), we havet ⊃ A1 ∧ ... ∧ An ∈ ∆.
By propositional reasoning, it follows that:

t ⊃ byId(D1), ..., t ⊃ byId(Dn) → ∆

Observe that eachX ∈ ∆ is associated with a set of regulatory statementsF ,
such thatFid ⊆ Id and→L

∧

Fpost ⊃ Di for all 1 ≤ i ≤ n. Using the fact that

1 The stronger version of the necessitation rule (schematically equivalent to TNecc) can be de-
rived by making use of the two valued restriction of LTL. However, we have not found an
appropriate generalization for a many-valued logic.
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→L D1 ∧ ... ∧Dn ⊃ C, it is easy to show that→L

∧

Fpost ⊃ C. Then RBy1 gives us
X → t ⊃ byId(C) for all X ∈ ∆. Repeated applications of cut will give us:

t ⊃ byId(D1), ..., t ⊃ byId(Dn) → t ⊃ byId(C)

The desired result follows using propositional reasoning. The distribution axiom, i.e.,
→ byId(A ⊃ B) ⊃ byId(A) ⊃ byId(B) follows easily using this derived rule, and the
fact that→L (A ⊃ B) ∧A ⊃ B. ⊓⊔

4.4 Completeness

We now discuss the soundness and completeness of the type system. Soundness, as
usual, is straightforward, and we leave the details to the reader. We begin by showing
completeness for the atemporal fragment. From the perspective of a temporal operator,
a formulabyId(C) is simply an atomic proposition which can have the middle value.
We use the pre-model construction in [27] to generalize the proof to a temporal setting.

Given an implicationX , let sub(X) be the set of subformulas ofX ∪Reg and their
negations. Note that the subformulas ofReg are the subformulas of the preconditions
and postconditions.¬¬A is identified withA. Givensub(X), we construct the set of
implicationscl(X) such that for allA ∈ sub(X) andt ∈ T {A ⊃ t, t ⊃ A} ⊆ cl(X).

Definition 13. GivenΓ ⊆ cl(X) andY ∈ cl(X):

– Γ is Y -consistent iffΓ → Y is not provable.Γ is Y -inconsistent iffΓ → Y is
provable.

– Γ is maximalY -consistent iffΓ isY -consistent and for allZ ∈ cl(X)−Γ ,Γ∪{Z}
is Y -inconsistent

Theorem 2 ([25]). GivenΓ ⊆ cl(X) and Y ∈ cl(X) such thatΓ is maximalY -
consistent, for allA ∈ cl(X), there is exactly onet ∈ T such that{t ⊃ A,A ⊃ t} ⊆ Γ

Proof. We first show that for eachA ∈ cl(X) there is at most one truth value with the
requisite properties. Suppose not. The we have two truth values such that{t1 ⊃ A,A ⊃
t1} ⊆ Γ and{t2 ⊃ A,A ⊃ t2} ⊆ Γ . It is easy to derive thatΓ → t1 ⊃ t2 and
Γ → t2 ⊃ t1. Sincet1 6= t2, eithert1 6≤ t2 or t2 6≤ t1. So, by the truth value axioms
we have eithert1 ⊃ t2 → or t2 ⊃ t1 →. In either case, using cut,Γ → is provable, and
by thinning,Γ → Y is provable. This contradicts theY -consistency ofΓ .

Now we show that there is at least one truth value with the requisite properties.
Suppose not. SinceΓ is maximal, we have:

Γ,A ⊃ t, t ⊃ A→ Y (∀t ∈ T )

By Proposition 7, it follows thatΓ → Y , contradicting theY -consistency ofΓ . ⊓⊔

Lemma 4. GivenΓ ⊆ cl(X) andY ∈ cl(X) such thatΓ is maximalY -consistent and
byId(C) ∈ cl(X):

t ⊃ byId(C) ∈ Γ iff there existsF ∈ F(Id,C) such that for allA ∈ Fpre, t ⊃ A ∈ Γ

byId(C) ⊃ t ∈ Γ iff for all F ∈ F(Id,C), there existsA ∈ Fpre andA ⊃ t ∈ Γ .
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For each part, one direction follows directly from the inference rules, and the other
direction follows directly from Proposition 10.

Given a maximalX-consistent setΓ , we construct a statesΓ such that for all atomic
propositionsp, p ∈ sΓ iff {⊤ ⊃ p, p ⊃ ⊤} ⊆ Γ . We also construct setsαΓ andα′

Γ

such that for eachid.x : A ; B ∈ Reg:

– id: B ∈ αΓ iff {⊤ ⊃ A,A ⊃ ⊤} ⊆ Γ
– id: B ∈ α′

Γ iff id: B ∈ αΓ or {? ⊃ A,A ⊃?} ⊆ Γ

The completeness proof is finished in the usual way.sΓ is extended into a runR
with a single state. A single state suffices for the atemporal case.(αΓ , α

′
Γ ) are extended

to annotation functions(α, α′). It is easy to show thatval(α,α′)(A,R, i) = t iff t is the
unique value such that{A ⊃ t, t ⊃ A} ⊆ Γ . Using Lemma 4 and the construction
of annotation functions, we can argue that the annotations correspond to a fixed point.
Thus if→ X is not provable, we can create a maximal⊤ ⊃ X-consistent setΓ , which
is extended to a run and fixed point such thatX is not true.

Now, we consider the temporal case. GivenX ∈ L+ and a body of regulation,
let MX be the set of all maximal consistent sets, i.e.,Γ ∈ MX iff Γ is maximalY -
consistent for someY ∈ cl(X). We construct the relationδX ⊆ M × M such that
(Γ, Γ ′) ∈ δX iff for all temporal formulas2A ∈ sub(X), if t ⊃ 2A ∈ Γ , then{t ⊃
A, t ⊃ 2A} ⊆ Γ ′. Intuitively, the graph of maximal consistent setsGX = (MX , δX)
encodes a set or runs. The global formulas (t ⊃ 2A) get the right interpretation, but not
so for eventual formulas (2A ⊃ t). We will be interested in the set of paths which are
fulfilling [27]:

Definition 14. GivenX ∈ L+ andGX = (MX , δX), a path inGX is an infinite
sequence of statespX : N → MX , such that for alli ∈ N , (r(i), r(i + 1)) ∈ δX . A
pathpX is said to be fulfilling iff for all temporal formulas2A ∈ sub(X) and for all
i ∈ N , if 2A ⊃ t ∈ r(i), then there existsj ≥ i such thatA ⊃ t ∈ r(j).

We now prove the existence of fulfilling paths:

Lemma 5. GivenX ∈ L+ andGX = (MX , δX), for all Γ ∈ MX , 2A ⊃ t ∈ Γ iff
there exists a finite path(Γ0, ..., Γn) such thatΓ0 = Γ , for all 0 ≤ i < n, (Γi, Γi+1) ∈ δ

andA ⊃ t ∈ Γn.

Proof. Suppose2A ⊃ t ∈ Γ , and no appropriate finite sequence exists. LetTΓ ⊆MX

be the smallest set such that (a)Γ ∈ TΓ , and (b) ifΓ1 ∈ TΓ and (Γ1, Γ2) ∈ δX ,
thenΓ2 ∈ TΓ . In other words,TΓ is the set of states reachable fromΓ . Observe that
for all Γ ′ ∈ TΓ , A ⊃ t 6∈ Γ ′. Since the sets inTΓ are maximal, there exists some
t′ 6≤ t, such that for allΓ ′ ∈ TΓ , t′ ⊃ A ∈ Γ ′. Consider the set of implications
{t1 ⊃ 2A1, ..., tn ⊃ 2An} ⊆ Γ . We claim that:

t1 ⊃ 2A1, ..., tn ⊃ 2An, t1 ⊃ A1, ..., tn ⊃ An → t′ ⊃ A

For if not, we can construct a maximalt′ ⊃ A-consistent setΓ ′′ such thatΓ ′′ ∈ TΓ .
But, this contradicts the fact thatt′ ⊃ A ∈ Γ ′ for all Γ ′ ∈ TΓ . Assuming that the
sequent above is provable, using TNecc, we get:

t1 ⊃ 22A1, ..., tn ⊃ 22An, t1 ⊃ 2A1, ..., tn ⊃ 2An → t′ ⊃ 2A
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Using the fact that→ 2A ⊃ 22A, we can derive that:

t1 ⊃ 2A1, ..., tn ⊃ 2An → t′ ⊃ 2A

Since all items on the left are inΓ , t′ ⊃ 2A ∈ Γ . However,t′ 6≤ t and2A ⊃ t ∈ Γ ,
from which we can contradict the fact thatΓ is consistent. As a result, there exists
Γ ′ ∈ TΓ such thatA ⊃ t ∈ Γ ′. SinceMX is finite, there exists a finite path fromΓ to
Γ ′.

For the other direction, suppose we are given a finite path(Γ0, ..., Γn) such that
A ⊃ t ∈ Γn. We need to show that2A ⊃ t ∈ Γ0. The proof proceeds by induction
on n. For n = 0, we haveΓ0 → A ⊃ t. Since→ 2A ⊃ A, we can derive that
Γ0 → 2A ⊃ t. Forn = 1, we haveΓ1 → A ⊃ t. Suppose2A ⊃ t 6∈ Γ0, we have
Γ0 → t′ ⊃ 2A for somet′ 6≤ t. So,Γ1 → t′ ⊃ A contradicting the consistency of
Γ1. For the inductive set, sinceΓn → A ⊃ t, we haveΓ1 → 2A ⊃ t (by induction
hypothesis). Again, suppose2A ⊃ t 6∈ Γ0, we haveΓ0 → t′ ⊃ 2A for somet′ 6≤ t.
So,Γ1 → t′ ⊃ 2A contradicting the consistency ofΓ1. ⊓⊔

Completeness is established analogously to the atemporal setting. GivenX ∈ L+

such that→ X is not provable, we constructGX = (MX , δX). Observe that there exists
Γ ∈MX such thatΓ is ⊤ ⊃ X-consistent. Using Lemma 5, construct a fulfilling path
pX : N → MX such thatpX(0) = Γ . The path is extend to a runR with fixed point
annotations(α, α′), as discussed earlier. It is easy to show thatval(α,α′)(A,R, i) = t iff
t is the unique value such that{A ⊃ t, t ⊃ A} ⊆ Γ . As a result,val(α,α′)(X,R, 0) 6=
⊤, andX is not valid. We obtain the following:

Theorem 3. Given a body of regulationReg, for all implicationsX ∈ L+:
→ X is provable iffX is valid

4.5 Example Derivations

We discuss two examples. The first example will be used to clarify our definition of
conformance, and the second to show a prototype for the middle value.
Example 1: Consider the propositionalized version of our regulatory sentences:

– 1.o: d ∧ ¬by{2}(¬3test) ; 3test

– 2.p: sp ; ¬3test

The following is provable:

→ d ∧ ¬sp ⊃ by{1}(3test)

Since⊤ ⊃ ¬3test is satisfiable,→L ⊤ ⊃ 3test is not provable. By Proposition 6, we
have→ ¬3test ⊃ ¬3test. By Proposition 10, we get:

sp ⊃ t→ by{2}(¬3test) ⊃ t (∗)

Since→L 3test ⊃ 3test, it follows from RBy1 that:

t ⊃ d ∧ ¬by{2}(¬3test) → t ⊃ by{1}(3test) (∗∗)
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The result follows easily from propositional reasoning. From(∗), using(⊃ t), we get
→ by{2}(¬3test) ⊃ sp. Using the negation axiom, we get:

→ ¬sp ⊃ ¬by{2}(¬3test)

By Propositon 8, we haveA ⊃ B → t ⊃ A ⊃ B andt ⊃ A ⊃ B, t ⊃ A→ t ⊃ B.
We can derive that:

t ⊃ ¬sp→ t ⊃ ¬by{2}(¬3test) (∗ ∗ ∗)

Now using(∗∗), we can derivet ⊃ d, t ⊃ ¬by{2}(¬3test) → t ⊃ by{1}(3test).
Using(∗ ∗ ∗), an application of cut gives us:

t ⊃ d, t ⊃ ¬sp → t ⊃ by{1}(3test)

It is easy to show thatt ⊃ (d ∧ sp) → t ⊃ d andt ⊃ (d ∧ ¬sp) → t ⊃ ¬sp. Two
applications of cut gives ust ⊃ d ∧ ¬sp→ t ⊃ by{1}(3test). Now applying(t ⊃):

→ d ∧ ¬sp ⊃ by{1}(3test)

What does this tell us about conformance? Intuitively, regulations tell us nothing about
what actually holds. Given the regulation above,→ d ∧ ¬sp ⊃ 3test is not provable.
Conformance is a separate notion of inference, i.e.,what is required is true. Given
a body of regulation letIdo be the identifiers of the obligations. The actual state of
affairs can be given by a run, or described declaratively by a set of LTL formulasΓ .
The idea is thatΓ conforms to the regulation iff for all implicationsX ∈ L such that
Γ → ⊤ ⊃ byIdo

(X), we haveΓ → X .
Example 2: The following regulation gives us a prototype for the middle value:

– 1.o: ¬by{1}(p) ; p

This obligation requiresp when it doesn’t require p and is always ungrounded. The
following are provable:

→ by{1}(p) ⊃ ?

→ ? ⊃ by{1}(p)

Using RBy1, RBy2 and Proposition 10, it is easy to show that→ by{1}(p) ⊃ ¬by{1}(p)
and→ ¬by{1}(p) ⊃ by{1}(p). By propositional reasoning, it is easy to show that
A ⊃ ¬A,¬A ⊃ A → A ⊃ ? andA ⊃ ¬A,¬A ⊃ A → ? ⊃ A. The provability of the
claims follows easily.

5 Conclusions and Future Work

We have motivated and described a logic (RefL) that accomodates references between
laws. RefL separates two uses of statements – drawing inferences from regulation, and
determining facts about an organization. We believe that this separation is crucial to the
application of conformance checking.
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The inference predicate blends two ideas from logic programming. First, the Kripke-
Kleene-Fitting semantics [28], which uses three values for negation in logic programs.
In RefL, we place the burden on a predicate, rather than on negation. The advantage is
that connectives can behave as they do in a many valued logic. Second, contextual logic
programs [29] use operations to restrict the context from which inferences are derived.
Referring to specific laws (via identifiers) gives us a fine-grained control of context.

RefL provides a staring point in bringing the advantages of non-monotonic reason-
ing to systems such as [3, 5]. [3] represents business contracts as SQL queries, and [5]
uses first-order logic augmented with real time operators. The inference predicate can
be added to these systems, provided that the existential quantification is relativized to ei-
ther the preconditions or the postconditions. However, restrictions are needed to ensure
that the satisfiability tests remain decidable. [4] discusses the importance of anlayzing
references, but do not provide a formalization.

In this work, we have considered references to laws that appear in preconditions.
There is also the need for references in postconditions. An obvious case is for laws
that cancel obligations and permissions given by another, e.g.,if a donation is not used
for transfusion, exemption (3) no longer applies. A more speculative case can be made
for iterated deontic constructs [18], e.g., “required to allow x”. We suggest that the
semantics will involve representing agents who introduce laws that reason about each
other, e.g.,You are required to (introduce laws that) allow a patient to see his records.

On the computational side, our goal is to be able to scale up to runs with a large
number of objects, and incorporate RefL into a runtime checking framework for LTL.
In a companion paper [30], we identify a fragment of RefL motivated by a case study
of the FDA CFR. The fragment assumes thatbyId(ϕ) can be evaluated by using at most
one of the laws referred to. This assumption allows us to replace satisfiability tests with
tests of lower complexity, and lets us scale up to runs with a large number of objects. In
this paper, we have focussed on formally characterizing the semantics and complexity
of RefL, and in [30], we focus on optimizations that are needed in practice.
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